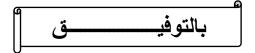

موقع عيون البصائر التعليمي

المدة: 1 ساعة و نصف 2022/2021 ثانوية اتباطة تيميز ار الفرض الاول في الرياضيات

المستوى:2عت

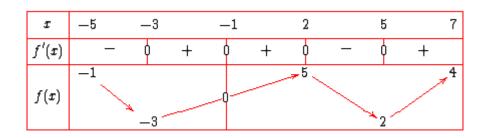
التمرين الأول: (8 ن)

دالة معرفة وقابلة للاشتقاق على المجال I=[-5,7]=1 بجدول تغيراتها:



- 1. اكمل الجدول السابق.
- . f'(x) = 0 و f(x) = 0 المعادلة f(x) = 0
 - . f(x) استنتج إشارة
 - f عين القيم الحدية المحلية للدالة 4
 - 5. هل الدالة f تقبل نقطة انعطاف؟ برر.
 - . I على الممثل للدالة f على المرثل الدالة على 6

الترين الثاني: (12ن)


 $f(x) = -x^3 + 6x^2 - 9x + 4$:ب [0;4] بنعتبر الدال $f(x) = -x^3 + 6x^2 - 9x + 4$

- (1) احسب f'(x) ثم ادرس تغیرات الدالة f وشكل جدول تغیراتها علی f'(x)
 - f عين القيم الحدية المحلية للدالة f
- $f\left(\frac{2}{\sqrt{2}}\right)$ و $f\left(\sqrt{3}\right)$ عين حصرا للدالة $f\left(\frac{2}{\sqrt{2}}\right)$ عين حصرا للدالة $f\left(\frac{2}{\sqrt{2}}\right)$ و $f\left(\frac{2}{\sqrt{2}}\right)$
 - .2 الفاصلة (C_f) المنحنى الفاصلة (T) المنحنى (4
 - $\left(T
 ight)$ ادر س الوضع النسبي بين (5
 - f(2,0001) عين احسن تقريب تالفي للدالة f بجوار 2 ثم استنتج قيمة تقريبية للعدد (6
 - .(C_f) اثبت ان النقطة $\Omega(2;2)$ مركز تناظر (7
 - f(x)=3 ارسم بدقة (C_f) و عين بيانيا حلول المعادلة (8

التمرين الأول:

1. اكمال الجدول

. f'(x) = 0 و f(x) = 0 المعادلة f(x) = 0

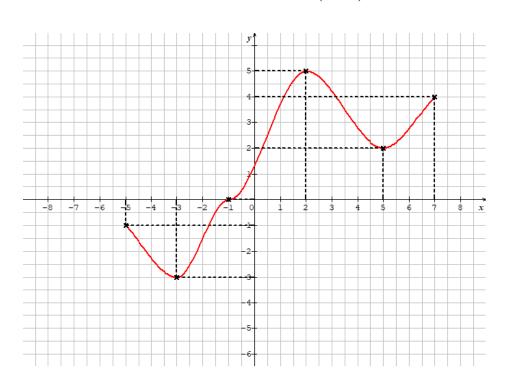
من جدول التغيرات لدينا f(-1) = 0 منه حل المعادلة هو -1

 $S = \{-3; -1; 2; 5\}$ و $S = \{-3; -1; 2; 5\}$ منه حلول المعادلة هي f'(5) = 0 و f'(2) = 0 و f'(-1) = 0

3. من جدول التغيرات نلاحظ:

x	-5	-1	7
f(x)	_	ģ	+

-3 عند القيم الحدية المحلية للدالة f: f قيمة حدية محلية صغرى تبلغها عند


2 قيمة حدية محلية صغرى تبلغها عند 5

5 قيمة حدية محلية كبرى تبلغها عند 2

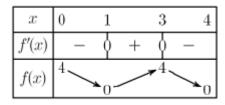
4. (2;5)و (5;-2) قيمة حدية محلية كبرى.

5. الدالة f تقبل نقطة انعطاف هي (-1;0) لان المشتقة تنعدم عند0 و لا تغير اشارتها.

6. الرسم:

elbassair.net

$$f(x) = -x^3 + 6x^2 - 9x + 4$$
 بـ: [0;4] بـ: $f(x) = -x^3 + 6x^2 - 9x + 4$


$$f'(x) = -3x^2 + 12x - 9 : f'(x)$$
 = (1)

$$-3x^{2}+12x-9=0$$
 معناه $f'(x)=0$ f معناه و الدالة f

منه المعادلة تقبل حلين متمايزين
$$\Delta = 12^2 - 4(-3)(-9) = 144 - 108 = 36 > 0$$

$$x_2 = \frac{-12 + \sqrt{36}}{-6} = 1$$
 $x_1 = \frac{-12 - \sqrt{36}}{-6} = 3$

جدول تغيراتها على [0;4].

2) القيم الحدية المحلية للدالة £

من جدول التغيرات لدينا 0 قيمة حدية محلية صغرى تبلغها عند 1

4 قيمة حدية محلية كبرى تبلغها عند 3

[3;4] لمجال الدالة f على المجال [1;3] ثم على المجال [3

 $0 \le f(x) \le 4$ أي $f(1) \le f(x) \le f(3)$ منه المجال [1;3] منه الدالة $f(1) \le f(x) \le f(3)$

 $0 \le f(x) \le 4$ أي $f(4) \le f(x) \le f(3)$ منه [3,4] أي الدالة $f(4) \le f(4) \le f(3)$

$$f\left(\frac{2}{\sqrt{2}}\right)$$
 و $f\left(\sqrt{3}\right)$ مقارنة العددين

[1;3] حيث $\sqrt{2} < \sqrt{3}$ حيث $\sqrt{2} = \sqrt{2} = \sqrt{2} \in [1,3]$ دينا الدالة $\sqrt{3} \in [1,3]$ حيث حيث $\sqrt{3} \in [1,3]$ حيث المجال الدينا

$$f\left(\frac{2}{\sqrt{2}}\right) < f\left(\sqrt{3}\right)$$
 فان

. 2 معادلة المماس (T) المنحنى المنحنى عند النقطة ذات الفاصلة (4

$$(T)$$
: $y = f'(2)(x-2) + f(2)$

$$f'(2) = -3(2)^{2} + 12(2) - 9 = 3$$
 = $3(x-2) + 2$

$$=3x-6+2$$

$$= 3x - 4$$

f(x)-y دراسة الوضع النسبي بين (C_f) و (C_f) : ندرس إشارة الفرق (5

$$f(x) - y = -x^{3} + 6x^{2} - 9x + 4 - 3x + 4$$

$$= -x^{3} + 6x^{2} - 12x + 8$$

$$= (-x)^{3} + 3 \cdot 2x^{2} - 3 \cdot 2^{2}x + 2^{3}$$

$$= (2 - x)^{3}$$

elbassair.net

X	0 2 4		
f(x)-y	+ 0 -		
الوضع النسبي	(T) نحت (C_f) فوق (C_f)		
	ر T) يقطع C_f		

احسن تقريب تالفي للدالة f بجوار f هو المماس f الذي معادلته f=3x-4 وبالتالي القيمة التقريبية f للعدد f(2,0001)

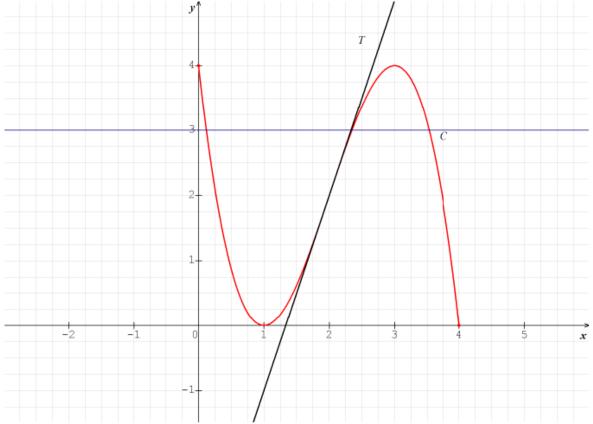
$$f(2,0001) \approx 3(2,0001) - 4 = 2,0001$$

 $\Omega(2;2)$ مركز تناظر (7) اثبات ان النقطة (7) مركز تناظر

$$f(2a-x)+f(x)=2b$$

$$f(2(2)-x)+f(x) = f(4-x)+f(x)$$

$$= -(4-x)^3 + 6(4-x)^2 - 9(4-x) + 4 - x^3 + 6x^2 - 9x + 4$$


$$= -(-x^3 + 12x^2 - 48x + 64) + 6(x^2 - 8x + 16) - 36 + 9x - x^3 + 6x^2 - 9x + 8$$

$$= x^3 - 12x^2 + 48 - 64 + 6x^2 - 48x + 96 - 36 + 9x - x^3 + 6x^2 - 9x + 8$$

$$= 4 = 2b$$

 $\Omega(C_f)$ مركز تناظر $\Omega(2;2)$ منه النقطة

f(x)=3 رسم (C_f) و رسم (8) رسم (

Y=3حلول المعادلة f(x)=3 هي نقاط تقاطع القاطع المستقيم الذي معادلته

elbassair.net